

Polluted Water STEM Challenge

Can you build a model filtering system that can be used to clean the water of a small town with a polluted water supply?

Testing different filtering materials:

- 1. After learning about filtration, **plan** and **design** a simple filtration system that can clean a sample of polluted water.
- Using the materials provided, construct your filtration system.
 Your system should include a base, a funnel, and a porous plate (cheesecloth).
- 3. Choose at least 3 different materials that you think would make good filters and try filtering a 50 ml sample of polluted water using each of the materials separately.
- 4. After filtering each one, evaluate the overall quality of the filtering and write down your observations.



Type of Filter	r Quality of Filtering					Observations:
	Poor			Ex	cellent	
Coffee Filter	1	2	3	4	5	
Paper Towel	1	2	3	4	5	
Napkin	1	2	3	4	5	
Cotton Balls	1	2	3	4	5	
Sand	1	2	3	4	5	
Gravel	1	2	3	4	5	

Part 2:

Planning and designing a filtration system.

- 1. **Plan** and **design** a simple filtration system that can clean a sample of polluted water.
- Using your results from Part 1, construct a multiple layer filter within the funnel of your system. The filter should include least 3 layers arranged in the way that you think will be most effective.
- 3. Once the filtration system is constructed, carefully **test** it by filtering a 50 ml sample of polluted water through the system. Evaluate the overall quality of the filtering and write down your observations.

Quality of Filtering						
Poor						Excellent
	1	2	3	4	5	
Observa	tions:					
		Poor	Poor 1 2	Poor 1 2 3	Poor 1 2 3 4	Poor 1 2 3 4 5

Evaluating and Improving:

1. As a group, **evaluate** the effectiveness of your design and discuss how you would change your design moving forward to **improve** the performance of your filtering system. If time permits, make these improvements and re-test.

Drawing of our improved water filter (label	red water filter (label Quality of Filtering						
each layer).	Poor						Excellent
		1	2	3	4	5	