

Purpose:	To determine the type of soil present in your area. Using a soil texture chart, you will determine if you have soil with majority sand, loam or clay.
Standard:	 S3E1. Obtain, evaluate, and communicate information about the physical attributes of rocks and soils b. Plan and carry out investigations to describe properties (color, texture, capacity to retain water, and ability to support growth of plants) of soils and soil types (sand, clay, loam).
Materials:	 Soil samples (access to an area where you are allowed to dig) Ruler (or be able to estimate depth) Tap water Garden trowel or spoon for digging Teaspoon or medicine dropper Soil texture flow chart
Procedures:	 Topsoil Exploration: Put approximately 25 grams (a handful, see photo) of soil from the topsoil outside. Topsoil is the first 5 centimeters. Knead the soil to break up any larger pieces. Add water, drops at a time, to help break down aggregates. Continue this process until the soil is plastic and moldable, like moist putty. Use the Soil Texture Flow Chart to deduce your topsoil composition. (See attachment)
	 Subsoil Exploration: Dig into the subsoil to gain another sample. Subsoil is near 50 cm. Digging between 30-50 cm will suffice. Procure approximately a 25-gram sample of subsoil. Add water, drops at a time, and knead the soil to break down any aggregates. Continue this process until the soil is plastic and moldable, like moist putty. Use the Soil Texture Flow Chart to deduce your subsoil composition (See attachment)
Science Behind It:	There are many soil properties that help us describe and manage soils. Some of the important physical properties are described below. Soil Texture

	The particles that make up soil are categorized into three groups by
	size – sand, silt, and clay. Sand particles are the largest and clay
	particles the smallest. Most soils are a combination of the three. The
	relative percentages of sand, silt, and clay are what give soil its
	texture. A clay loam texture soil, for example, has nearly equal parts
	of sand slit and clay Sand -2.0 to 0.05 mm Silt -0.05 to 0.002 mm
	Clav - less than 0.002 mm
	There are 12 soil textural classes represented on the soil texture
	triangle on the right. This triangle is used so that terms like "clay" or
	"loam" always have the same meaning. Each texture corresponds to
	specific percentages of sand silt or clay. Knowing the texture being
	us manage the soil
	Soil Structure
	Soil structure is the arrangement of soil particles into small clumps
	called node or aggregates. Soil particles (cand silt clay and even
	cancel peus of aggregates. Son particles (sand, sin, clay and even
	organic matter) bind together to form peds. Depending on the
	composition and on the conditions in which the peak formed (getting
	wet and drying out, or freezing and thawing, foot traffic, farming,
	etc.), the ped has a specific shape. They could be granular (like
	gardening soil), blocky, columnar, platy, massive (like modeling
	clay) or single-grained (like beach sand). Structure correlates to the
	pore space in the soil which influences root growth and air and water
	movement
	Soil Color Soil color is influenced primarily by soil mineralogy –
	telling us what is in a specific soil. Soils high in iron are deep
	orange-brown to yellowish-brown. Those soils that are high in
	organic matter are dark brown or black. Color can also tell us how a
	soil "behaves" – a soil that drains well is brightly colored and one
	that is often wet and soggy will have a mottled pattern of grays, reds,
	and yellows.
	Soil Profile There are different types of soil, each with its own set of
	characteristics. Dig down deep into any soil, and you'll see that it is
	made of layers, or horizons (O, A, E, B, C, R). Put the horizons
	together, and they form a soil profile. Like a biography, each profile
	tells a story about the life of a soil. Most soils have three major
	horizons (A, B, C) and some have an organic horizon (O).
Ouestions to Ask:	What is a soil profile?
	What is the difference between sand, clay, and loam?
	What type of soil do you have in your area?