

My Straw Oboe

Simple STEM Activities You Can Do at Home

Purpose:	The purpose of this activity is to construct a simple straw oboe that vibrates to
	produces sounds of different pitches (frequencies).
Standard:	S4P2. Obtain, evaluate, and communicate information about how sound is
	produced and changed and how sound and/or light can be used to
	communicate.
	a. Plan and carry out an investigation utilizing everyday objects to produce
	sound and predict the effects of changing the strength of vibrations.
	S8P4. Obtain, evaluate, and communicate information to support the claim
	that electromagnetic (light) waves behave differently than mechanical (sound)
	waves.
	d. Develop and use a model to compare how light and sound waves are
	reflected, refracted, absorbed or transmitted through various materials.
Materials:	2-3 straws, scissors, ruler.
Procedures:	1. Using a scissors or ruler, push down on one end of the straw to flatten.
	2. Carefully cut the same end of a straw into a long narrow triangle about 1
	inch long. The two triangles will serve as reeds for your oboe.
	3. Blow into the straw and try to get it to vibrate. Try different positions as
	needed. If the oboe won't vibrate, try cutting a second straw.
	4. To modify the pitch, add another skinnier straw into your straw oboe to
	lengthen it. Blow into the now longer oboe and compare the pitch.
	5. Optional: With parental supervision, while blowing into the oboe, use a
	scissors to cut some pieces off the straw and observe the changes in pitch.
Science Behind It:	When objects vibrate, they produce waves that travel through the air. When
	these waves enter the ear of the listener, they can be interpreted as sounds.
	Musical instruments vibrate in different ways to produce a variety of appealing
	sounds. The faster they vibrate, the more waves per second the instrument
	produces and the higher the pitch (frequency) of the sound. Some instruments
	like a flute or piccolo can produce very high pitches while other instruments like
	a tuba or trombone can vibrate at much lower frequencies.
	With reed instruments the sounds are made when the air travels across a thin
	piece of wood called a reed . The reed vibrates making the sound. Some
	instruments like the clarinet have one reed while others like the oboe use
	two reeds to vibrate against each other.
	The pitch of our straw oboe will depend on the volume of air that is vibrating
	inside of it. A longer oboe with larger volume vibrates more slowly, producing a
	lower pitch . A shorter oboe with a smaller volume vibrates more quickly,
	producing a higher pitch . With real oboes, the player can also change the
	pitch by opening and closing holes along the instrument's length.
Questions to Ask:	1. Explain why your oboe was able to vibrate and produce sound.
	2. What happened to the pitch or your oboe as you made it longer?